Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Allergol. immunopatol ; 52(1): 72-78, 01 jan. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-229177

RESUMO

Background: Melanoma is the most aggressive form of skin cancer. Melanoma stem cells (MSCs) are one of the driving forces of melanoma invasion and metastasis. Therefore, it is of great significance to explore the mechanisms that maintain the stemness of MSCs. In this study, CD147-positive (CD147+) MSCs derived from A375 cell line were characterized. Methods: Side population (SP) and non-SP cells were sorted from A375 cells. Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to determine the expression of CD147 in SP and non-SP cells. Subsequently, CD147+ and CD147-negative (CD147-) cells were isolated from SP cells. Stem cell characteristics and metastatic potential of CD147+/- antigen-presenting cells were identified by sphere-forming, wound-healing, and transwell assays. Western blot analysis was performed to evaluate the protein levels of transforming growth factor-beta1 (TGFβ1) and neurogenic locus notch homolog protein 1 (Notch1) signaling pathway. Xenograft tumor experiments were conducted to investigate the tumorigenic capacity of CD147+ cells in vivo. Results: CD147 was highly expressed in SP cells of A375 cell line. CD147+ cells have stronger abilities for sphere forming, migration, and invasion in vitro. The protein levels of TGFβ1, notch1, jagged1, and Hes1 were higher in CD147+ cells than in CD147- cells. Moreover, the CD147+ cells showed stronger tumorigenic and metastatic potential in vivo. Conclusion: SP cells of A375 cell line expressed high levels of CD147, and CD147+ SP cells possessed much stronger stem-like characteristics and motility, which is linked to the activation of TGFβ and notch pathways (AU)


Assuntos
Humanos , Células-Tronco Neoplásicas/imunologia , Melanoma/imunologia , Basigina/imunologia , Transdução de Sinais , Movimento Celular
2.
Cancer Lett ; 542: 215762, 2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-35659513

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is invasive and heterogeneous, and existing therapies are sometimes unsuccessful. Chimeric antigen receptor (CAR) T cell therapy is a breakthrough tumor treatment method, particularly for B cell acute lymphoblastic leukemia. We found that CD147 was highly expressed in tumor T cells of T-ALL patients and T cell lymphoma. Therefore, CD147-CAR T cells that contain a humanized single-chain variable fragment targeting human CD147 and a second-generation CAR frame were constructed for treating T-ALL. CD147-CAR T cells were able to maintain a healthy proliferation rate, preserving a subset of CD62L+/CCR7+ memory T cells. CD147-CAR T cells showed a potent anti-tumor activity against human T-ALL cell line and T-ALL blasts, releasing high level of cytokines in the process. However, CD147-CAR T cells exhibited potential safety toward human normal cells and CD147-deficent cells. NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt mice were used to establish a T-ALL xenograft model and CD147-CAR T cells conferred robust protection against T-ALL progression and significantly improved survival in mice. Overall, we found that CD147 is a potential antigen target of CAR T cell therapy for T-ALL.


Assuntos
Basigina , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Animais , Basigina/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos NOD , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T
3.
mSphere ; 6(4): e0064721, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378982

RESUMO

Basigin, or CD147, has been reported as a coreceptor used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to invade host cells. Basigin also has a well-established role in Plasmodium falciparum malaria infection of human erythrocytes, where it is bound by one of the parasite's invasion ligands, reticulocyte binding protein homolog 5 (RH5). Here, we sought to validate the claim that the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein can form a complex with basigin, using RH5-basigin as a positive control. Using recombinantly expressed proteins, size exclusion chromatography and surface plasmon resonance, we show that neither RBD nor full-length spike glycoprotein bind to recombinant human basigin (expressed in either Escherichia coli or mammalian cells). Further, polyclonal anti-basigin IgG did not block SARS-CoV-2 infection of Vero E6 cells. Given the immense interest in SARS-CoV-2 therapeutic targets to improve treatment options for those who become seriously ill with coronavirus disease 2019 (COVID-19), we would caution the inclusion of basigin in this list on the basis of its reported direct interaction with SARS-CoV-2 spike glycoprotein. IMPORTANCE Reducing the mortality and morbidity associated with COVID-19 remains a global health priority. Vaccines have proven highly effective at preventing infection and hospitalization, but efforts must continue to improve treatment options for those who still become seriously ill. Critical to these efforts is the identification of host factors that are essential to viral entry and replication. Basigin, or CD147, was previously identified as a possible therapeutic target based on the observation that it may act as a coreceptor for SARS-CoV-2, binding to the receptor binding domain of the spike protein. Here, we show that there is no direct interaction between the RBD and basigin, casting doubt on its role as a coreceptor and plausibility as a therapeutic target.


Assuntos
Basigina/metabolismo , COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Basigina/imunologia , COVID-19/imunologia , Linhagem Celular , Chlorocebus aethiops , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ligação Proteica/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Internalização do Vírus
4.
Mol Neurobiol ; 58(9): 4392-4403, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34014436

RESUMO

The blood-brain barrier (BBB) poses challenges for delivering antibody-based therapeutics to the brain and is a main obstacle for the successful application of biotherapeutics for the treatment of brain disorders. As only a small fraction of monoclonal antibodies (mAbs) is penetrating the BBB, high doses of therapeutics are required to elicit a pharmacological effect. This limitation has evoked research to improve transport across the BBB through receptor-mediated transcytosis, and several receptors have been explored for mediating this process. A recently suggested candidate is the brain endothelial cells (BECs) expressed basigin. Here, we explore the transcytosis capacity of different basigin mAbs targeting distinct epitopes using the porcine in vitro BBB models and provide data showing the intracellular vesicle sorting of these basigin mAbs in porcine BECs. Our data suggest that basigin mAbs avoid the lysosomal degradation pathway and are internalized to vesicles used by recycling receptors. Engagement of basigin mAbs with basigin led to the translocation of the mAbs across the tight BECs into the astrocytes in our in vitro BBB co-culture model. Although mAbs with higher binding affinity to basigin showed a greater astrocyte internalization, based on our experiments, it is not clear whether the transcytosis is affinity- or epitope-dependent or a combination of both. Overall, this study provides information about the intra- and intercellular fate of basigin mAbs in BECs, which are valuable for the future design of basigin-mediated drug delivery platforms.


Assuntos
Anticorpos Monoclonais/farmacologia , Basigina/imunologia , Barreira Hematoencefálica/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Células Endoteliais/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Transporte Biológico , Encéfalo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Suínos
5.
Front Immunol ; 12: 565625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679730

RESUMO

Sub-Saharan Africa has generally experienced few cases and deaths of coronavirus disease 2019 (COVID-19). In addition to other potential explanations for the few cases and deaths of COVID-19 such as the population socio-demographics, early lockdown measures and the possibility of under reporting, we hypothesize in this mini review that individuals with a recent history of malaria infection may be protected against infection or severe form of COVID-19. Given that both the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Plasmodium falciparum (P. falciparum) merozoites bind to the cluster of differentiation 147 (CD147) immunoglobulin, we hypothesize that the immunological memory against P. falciparum merozoites primes SARS-CoV-2 infected cells for early phagocytosis, hence protecting individuals with a recent P. falciparum infection against COVID-19 infection or severity. This mini review therefore discusses the potential biological link between P. falciparum infection and COVID-19 infection or severity and further highlights the importance of CD147 immunoglobulin as an entry point for both SARS-CoV-2 and P. falciparum into host cells.


Assuntos
Basigina/imunologia , COVID-19 , Memória Imunológica , Malária Falciparum , Plasmodium falciparum/imunologia , SARS-CoV-2/imunologia , África Subsaariana/epidemiologia , COVID-19/epidemiologia , COVID-19/imunologia , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Merozoítos/imunologia , Índice de Gravidade de Doença
6.
Front Immunol ; 12: 739592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975837

RESUMO

Background: Angiogenesis is a major contributor to the development of inflammation during Rheumatoid arthritis (RA), as the vascularization of the pannus provides nutrients and oxygen for the infiltrating immune cells and proliferating synoviocytes. Tocilizumab (TCZ) is an anti-IL-6 receptor antibody that is used in the treatment of RA patients, and has been shown to exert anti-inflammatory effects. However, its effects on angiogenesis are not fully elucidated, and the molecular mechanisms regulating this effect are unknown. Methods: We evaluated the concentrations of several pro- and anti-angiogenic factors and the expression levels of several microRNA molecules that are associated with RA and angiogenesis in serum samples obtained from 40 RA patients, before and 4 months after the initiation of TCZ treatment. Additionally, we used an in vitro co-culture system of fibroblasts (the HT1080 cell line) and monocytes (the U937 cell line) to explore the mechanisms of TCZ action. Results: Serum samples from RA patients treated with TCZ exhibited reduced circulating levels of EMMPRIN/CD147, enhanced expression of circulating miR-146a-5p and miR-150-5p, and reduced the angiogenic potential as was manifested by the lower number of tube-like structures that were formed by EaHy926 endothelial cell line. In vitro, the accumulation in the supernatants of the pro-angiogenic factors EMMPRIN, VEGF and MMP-9 was increased by co-culturing the HT1080 fibroblasts and the U937 monocytes, while the accumulation of the anti-angiogenic factor thrombospondin-1 (Tsp-1) and the expression levels of miR-146a-5p were reduced. Transfection of HT1080 cells with the miR-146a-5p mimic, decreased the accumulation of EMMPRIN, VEGF and MMP-9. When we neutralized EMMPRIN with a blocking antibody, the supernatants derived from these co-cultures displayed reduced migration, proliferation and tube formation in the functional assays. Conclusions: Our findings implicate miR-146a-5p in the regulation of EMMPRIN and propose that TCZ affects angiogenesis through its effects on EMMPRIN and miR-146a-5p.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Artrite Reumatoide/tratamento farmacológico , Basigina/imunologia , MicroRNAs/imunologia , Neovascularização Patológica/tratamento farmacológico , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Basigina/sangue , Basigina/genética , Técnicas de Cocultura , Feminino , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Neovascularização Patológica/sangue , Neovascularização Patológica/imunologia , Células Tumorais Cultivadas
7.
J Leukoc Biol ; 110(2): 343-356, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33205451

RESUMO

Treatment of solid tumors is often hindered by an immunosuppressive tumor microenvironment (TME) that prevents effector immune cells from eradicating tumor cells and promotes tumor progression, angiogenesis, and metastasis. Therefore, targeting components of the TME to restore the ability of immune cells to drive anti-tumoral responses has become an important goal. One option is to induce an immunogenic cell death (ICD) of tumor cells that would trigger an adaptive anti-tumoral immune response. Here we show that incubating mouse renal cell carcinoma (RENCA) and colon carcinoma cell lines with an anti-extracellular matrix metalloproteinase inducer polyclonal antibody (161-pAb) together with complement factors can induce cell death that inhibits caspase-8 activity and enhances the phosphorylation of receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase-like domain (MLKL). This regulated necrotic death releases high levels of dsRNA molecules to the conditioned medium (CM) relative to the necrotic death of tumor cells induced by H2 O2 or the apoptotic death induced by etoposide. RAW 264.7 macrophages incubated with the CM derived from these dying cells markedly enhanced the secretion of IFNß, and enhanced their cytotoxicity. Furthermore, degradation of the dsRNA in the CM abolished the ability of RAW 264.7 macrophages to secrete IFNß, IFNγ-induced protein 10 (IP-10), and TRAIL. When mice bearing RENCA tumors were immunized with the 161-pAb, their lysates displayed elevated levels of phosphorylated RIPK3 and MLKL, as well as increased concentrations of dsRNA, IFNß, IP-10, and TRAIL. This shows that an antigen-targeted therapy using an antibody and complement factors that triggers ICD can shift the mode of macrophage activation by triggering regulated necrotic death of tumor cells.


Assuntos
Basigina/imunologia , Proteínas do Sistema Complemento/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Necrose/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores , Caspases/metabolismo , Sobrevivência Celular , Citotoxicidade Imunológica , DNA de Neoplasias/imunologia , Modelos Animais de Doenças , Humanos , Imunomodulação , L-Lactato Desidrogenase/metabolismo , Camundongos
9.
Signal Transduct Target Ther ; 5(1): 283, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277466

RESUMO

In face of the everlasting battle toward COVID-19 and the rapid evolution of SARS-CoV-2, no specific and effective drugs for treating this disease have been reported until today. Angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, mediates the virus infection by binding to spike protein. Although ACE2 is expressed in the lung, kidney, and intestine, its expressing levels are rather low, especially in the lung. Considering the great infectivity of COVID-19, we speculate that SARS-CoV-2 may depend on other routes to facilitate its infection. Here, we first discover an interaction between host cell receptor CD147 and SARS-CoV-2 spike protein. The loss of CD147 or blocking CD147 in Vero E6 and BEAS-2B cell lines by anti-CD147 antibody, Meplazumab, inhibits SARS-CoV-2 amplification. Expression of human CD147 allows virus entry into non-susceptible BHK-21 cells, which can be neutralized by CD147 extracellular fragment. Viral loads are detectable in the lungs of human CD147 (hCD147) mice infected with SARS-CoV-2, but not in those of virus-infected wild type mice. Interestingly, virions are observed in lymphocytes of lung tissue from a COVID-19 patient. Human T cells with a property of ACE2 natural deficiency can be infected with SARS-CoV-2 pseudovirus in a dose-dependent manner, which is specifically inhibited by Meplazumab. Furthermore, CD147 mediates virus entering host cells by endocytosis. Together, our study reveals a novel virus entry route, CD147-spike protein, which provides an important target for developing specific and effective drug against COVID-19.


Assuntos
Basigina/genética , COVID-19/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Basigina/imunologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Pandemias , Ligação Proteica/imunologia , Domínios Proteicos/genética , Domínios Proteicos/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
10.
Front Immunol ; 11: 607069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335532

RESUMO

Upon recognition of microbial DNA or self-DNA, the cyclic-GMP-AMP synthase (cGAS) of the host catalyzes the production of the cyclic dinucleotide cGAMP. cGAMP is the main activator of STING, stimulator of interferon genes, leading to interferon synthesis through the STING-TBK1-IRF3 pathway. STING is also a hub for activation of NF-κB and autophagy. The present review details the striking similarities between T and B cell responses in severe coronavirus disease 2019 (COVID-19) and both animal or human models of STING gain of function (SAVI syndromes: STING-associated vasculopathy with onset in infancy). Those similarities may be further clues for a delayed activation of STING in severe COVID-19 patients, due to DNA damages following severe acute respiratory syndrome coronaviruses (SARS-CoV-2) infection and unusual role of STING in SARS-CoV-2 control. In early stages, Th2 differentiation are noticed in both severe COVID-19 and SAVI syndromes; then, CD4+ and CD8+ T cells functional exhaustion/senescent patterns due to TCR hyper-responsiveness are observed. T cell delayed over-responses can contribute to pneumonitis and delayed cytokine secretion with over-production of IL-6. Last, STING over-activation induces progressive CD4+ and CD8+ T lymphopenia in SAVI syndromes, which parallels what is observed in severe COVID-19. ACE2, the main receptor of SARS-CoV-2, is rarely expressed in immune cells, and it has not been yet proven that some human lymphocytes could be infected by SARS-CoV-2 through CD147 or CD26. However, STING, expressed in humans T cells, might be triggered following excessive transfer of cGAMP from infected antigen presenting cells into activated CD4+ and CD8+ T cells lymphocytes. Indeed, those lymphocytes highly express the cGAMP importer SLC19A1. Whereas STING is not expressed in human B cells, B cells counts are much less affected, either in COVID-19 or SAVI syndromes. The recognition of delayed STING over-activation in severe COVID-19 patients could prompt to target STING with specific small molecules inhibitors already designed and/or aspirin, which inhibits cGAS.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Proteínas de Membrana/imunologia , SARS-CoV-2/imunologia , Células Th2/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Linfócitos B/patologia , Basigina/imunologia , Linfócitos T CD8-Positivos/patologia , COVID-19/patologia , Dipeptidil Peptidase 4/imunologia , Humanos , Fator Regulador 3 de Interferon/imunologia , Nucleotidiltransferases/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/imunologia , Células Th2/patologia
12.
Virus Res ; 289: 198152, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32896569

RESUMO

Porcine circovirus type2 (PCV2) is a member of the circoviridae family. PCV2 was identified as the main pathogen of postweaning multisystemic wasting syndrome (PMWS) in weaned piglets and causes massive economic loss. Basigin, is a transmembrane glycoprotein belonging to the immunoglobulin superfamily; which is also a receptor for cyclophilins. CyP belongs to the immunophilin family that has peptidyl-prolyl cis-trans isomerase activity. Basigin-CyP interaction affects the replication stages of several viruses. In this study, we found that Basigin could elevate the replication of PCV2, and the Basigin only affected the replication stage rather than adsorption or endocytosis stages. In addition, the ligands of Basigin, CyPA and CyPB also elevated the replication of PCV2. Basigin-CyP interation was necessary for elevating PCV2 replication; At last, CyPs were proved to promote the replication of PCV2 by activating ERK signaling.


Assuntos
Basigina/imunologia , Infecções por Circoviridae , Circovirus , Ciclofilinas/imunologia , Doenças dos Suínos , Animais , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/virologia , Circovirus/imunologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Replicação Viral
13.
Sci Rep ; 10(1): 14582, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884039

RESUMO

The brain uptake of biotherapeutics for brain diseases is hindered by the blood-brain barrier (BBB). The BBB selectively regulates the transport of large molecules into the brain and thereby maintains brain homeostasis. Receptor-mediated transcytosis (RMT) is one mechanism to deliver essential proteins into the brain parenchyma. Receptors expressed in the brain endothelial cells have been explored to ferry therapeutic antibodies across the BBB in bifunctional antibody formats. In this study, we generated and characterized monoclonal antibodies (mAbs) binding to the basigin receptor, which recently has been proposed as a target for RMT across the BBB. Antibody binding properties such as affinity have been demonstrated to be important factors for transcytosis capability and efficiency. Nevertheless, studies of basigin mAb properties' effect on RMT are limited. Here we characterize different basigin mAbs for their ability to associate with and subsequently internalize human brain endothelial cells. The mAbs were profiled to determine whether receptor binding epitope and affinity affected receptor-mediated uptake efficiency. By competitive epitope binning studies, basigin mAbs were categorized into five epitope bins. mAbs from three of the epitope bins demonstrated properties required for RMT candidates judged by binding characteristics and their superior level of internalization in human brain endothelial cells.


Assuntos
Anticorpos Monoclonais/metabolismo , Basigina/imunologia , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Epitopos/imunologia , Preparações Farmacêuticas/metabolismo , Receptores da Transferrina/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Transporte Biológico , Encéfalo/citologia , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Camundongos , Transcitose
14.
FEBS J ; 287(17): 3677-3680, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738184

RESUMO

Coronavirus disease 2019 (COVID-19), the highly contagious illness caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread across the globe, becoming one of the most challenging public health crisis of our times. SARS-CoV-2 can cause severe disease associated with multiple organ damage. Cancer patients have a higher risk of SARS-CoV-2 infection and death. While the virus uses angiotensin-converting enzyme 2 (ACE2) as the primary entry receptor, the recent experimental and clinical findings suggest that some tumor markers, including CD147 (basigin), can provide an additional entry for SARS-CoV-2 infection through binding to the viral spike (S) protein. In the absence of specific viral drugs, blocking of CD147 might be a way to prevent virus invasion. Identifying other target proteins is of high importance as targeting the alternative receptors for SARS-CoV-2 might open up a promising avenue for the treatment of COVID-19 patients, including those who have cancer.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Basigina/antagonistas & inibidores , Biomarcadores Tumorais/antagonistas & inibidores , Tratamento Farmacológico da COVID-19 , Neoplasias/tratamento farmacológico , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Basigina/genética , Basigina/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Ensaios Clínicos como Assunto , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/virologia , Ligação Proteica , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Allergy ; 75(11): 2829-2845, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32496587

RESUMO

BACKGROUND: Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19. METHODS: We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status. RESULTS: ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis. CONCLUSIONS: Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Basigina/imunologia , COVID-19/epidemiologia , Doença Crônica/epidemiologia , Dipeptidil Peptidase 4/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Enzima de Conversão de Angiotensina 2/genética , Asma/epidemiologia , Asma/genética , Asma/imunologia , Basigina/genética , COVID-19/genética , COVID-19/imunologia , Criança , Pré-Escolar , Comorbidade , Dipeptidil Peptidase 4/genética , Feminino , Expressão Gênica/genética , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Hipertensão/imunologia , Imunidade Inata/imunologia , Lactente , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/genética , Obesidade/imunologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Fatores de Risco , SARS-CoV-2/genética , Adulto Jovem
16.
Stem Cell Rev Rep ; 16(3): 434-440, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307653

RESUMO

The expressive number of deaths and confirmed cases of SARS-CoV-2 call for an urgent demand of effective and available drugs for COVID-19 treatment. CD147, a receptor on host cells, is a novel route for SARS-CoV-2 invasion. Thus, drugs that interfere in the spike protein/CD147 interaction or CD147 expression may inhibit viral invasion and dissemination among other cells, including in progenitor/stem cells. Studies suggest beneficial effects of azithromycin in reducing viral load of hospitalized patients, possibly interfering with ligand/CD147 receptor interactions; however, its possible effects on SARS-CoV-2 invasion has not yet been evaluated. In addition to the possible effect in invasion, azithromycin decreases the expression of some metalloproteinases (downstream to CD147), induces anti-viral responses in primary human bronchial epithelial infected with rhinovirus, decreasing viral replication and release. Moreover, resident lung progenitor/stem are extensively differentiated into myofibroblasts during pulmonary fibrosis, a complication observed in COVID-19 patients. This process, and the possible direct viral invasion of progenitor/stem cells via CD147 or ACE2, could result in the decline of these cellular stocks and failing lung repair. Clinical tests with allogeneic MSCs from healthy individuals are underway to enhance endogenous lung repair and suppress inflammation.


Assuntos
Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Basigina/genética , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/terapia , Pandemias , Pneumonia Viral/terapia , Glicoproteína da Espícula de Coronavírus/genética , Transplante de Células-Tronco , Enzima de Conversão de Angiotensina 2 , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/virologia , Basigina/antagonistas & inibidores , Basigina/imunologia , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , COVID-19 , Ensaios Clínicos como Assunto , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/imunologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/imunologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia , Células-Tronco/virologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/virologia , Carga Viral/efeitos dos fármacos
17.
Clin Exp Immunol ; 199(1): 97-108, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509227

RESUMO

Kidney injury significantly increases overall mortality. Neutrophilic granulocytes (neutrophils) are the most abundant human blood leukocytes. They are characterized by a high turnover rate, chiefly controlled by granulocyte colony stimulating factor (G-CSF). The role of kidney injury and uremia in regulation of granulopoiesis has not been reported. Kidney transplantation, which inherently causes ischemia-reperfusion injury of the graft, elevated human neutrophil expression of the surface glycoprotein CD177. CD177 is among the most G-CSF-responsive neutrophil genes and reversibly increased on neutrophils of healthy donors who received recombinant G-CSF. In kidney graft recipients, a transient rise in neutrophil CD177 correlated with renal tubular epithelial G-CSF expression. In contrast, CD177 was unaltered in patients with chronic renal impairment and independent of renal replacement therapy. Under controlled conditions of experimental ischemia-reperfusion and unilateral ureteral obstruction injuries in mice, renal G-CSF mRNA and protein expression significantly increased and systemic neutrophilia developed. Human renal tubular epithelial cell G-CSF expression was promoted by hypoxia and proinflammatory cytokine interleukin 17A in vitro. Clinically, recipients of ABO blood group-incompatible kidney grafts developed a larger rise in neutrophil CD177. Their grafts are characterized by complement C4d deposition on the renal endothelium, even in the absence of rejection. Indeed, complement activation, but not hypoxia, induced primary human endothelial cell G-CSF expression. Our data demonstrate that kidney injury induces renal G-CSF expression and modulates granulopoiesis. They delineate differential G-CSF regulation in renal epithelium and endothelium. Altered granulopoiesis may contribute to the systemic impact of kidney injury.


Assuntos
Basigina/metabolismo , Endotélio/metabolismo , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/biossíntese , Neutrófilos/metabolismo , Insuficiência Renal/metabolismo , Trombopoese , Animais , Basigina/imunologia , Modelos Animais de Doenças , Endotélio/imunologia , Endotélio/patologia , Feminino , Fator Estimulador de Colônias de Granulócitos/imunologia , Humanos , Transplante de Rim , Masculino , Camundongos , Neutrófilos/imunologia , Neutrófilos/patologia , Insuficiência Renal/imunologia , Insuficiência Renal/patologia , Insuficiência Renal/cirurgia , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Obstrução Ureteral/imunologia , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
18.
Biochem Biophys Res Commun ; 513(4): 1083-1091, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31010682

RESUMO

Cluster of differentiation 147 (CD147), a transmembrane protein of the immunoglobulin superfamily, is a potential target of treatment against human non-small cell lung cancer (NSCLC). Although there have been exciting advances in epidermal growth factor receptor (EGFR)-targeted therapy for NSCLC in recent years, additional novel targeted agents are needed to improve the efficiency and to offer more options for patients. Antibody-drug conjugates (ADCs) utilize a chemical linker to conjugate cytotoxic drugs to a monoclonal antibody to maximize the delivery to target cells and minimize the delivery to other normal cells. The aim of this study was to prepare a novel anti-CD147 conjugate and examine the tumoricidal effect on NSCLC in vitro and in vivo. HcHAb18 was conjugated to the drug maytansinoid 1 (DM1) via a non-cleavable thioether linker (SMCC) to prepare HcHAb18-DM1 with an appropriate drug-antibody ratio (DAR). NSCLC cell lines expressing different levels of CD147 were tested in vitro to determine internalization, cell cycle arrest and cytotoxicity. In vivo efficacy and safety of HcHAb18-DM1 were evaluated in NSCLC xenograft mouse models. We found that HcHAb18-DM1 displayed an impressive potency in vitro and in vivo with a favorable safety profile. Upon binding to CD147, HcHAb18 could be internalized and delivered the payload DM1 to disturb mitotic spindle formation by microtubules. Target cells were arrested at G2/M phase and HcHAb18-DM1 exerted antiproliferative activity in vitro. Antigen-antibody binding and target cells with high growth rate were two integral prerequisites for exerting anti-tumor activity of HcHAb18-DM1. Therefore, we suggest HcHAb18-DM1 is a promising CD147-targeted therapeutic for NSCLC.


Assuntos
Basigina/imunologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imunoconjugados/uso terapêutico , Maitansina/administração & dosagem , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Basigina/análise , Carcinoma Pulmonar de Células não Pequenas/imunologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Xenoenxertos , Humanos , Imunoconjugados/química , Camundongos
19.
Oncol Rep ; 41(5): 2945-2956, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30864716

RESUMO

Impaired antitumor immunity or induced immunosuppression in the tumor microenvironment contributes significantly to tumor progression and resistance to immunotherapy. It is becoming increasingly recognized that dynamic metabolic programming orchestrates appropriate immune responses, whereas incorrect metabolic reprogramming may underlie aberrant immune remodeling. Furthermore, pathways that control cellular metabolism and immune cell function by transcriptional and post­transcriptional mechanisms are intimately interlinked, including hypo-xia­inducible factor 1α, c­Myc and phosphatidylinositol 3­kinase/protein kinase B/mammalian target of rapamycin signaling. Immunometabolism is an emerging research field involving investigation of the interaction between immunological and metabolic processes. It is likely that high levels of nutrient competition and metabolic interplay exist between tumor cells and infiltrating immune cells in the local tumor milieu, which consequently leads to a reduction in antitumor immunity or immune cell dysfunction. Recently, a metabolic molecular mechanism responsible for the tumorigenic capacity of cluster of differentiation (CD)147, which exhibits high expression on the surface of various malignant tumor cells and is associated with tumor progression via multiple non­metabolic molecular mechanisms, was identified. The aim of the present review was to focus on the glycolytic mechanism mediated by the upregulation of CD147 in tumors and tumor­imposed metabolic restrictions on tumor­infiltrating immune cells, and the consequent immunological hyporesponsiveness. Cellular metabolism is becoming increasingly acknowledged as a key regulator of T­cell function, specification and fate, and the manipulation of metabolic programming may elucidate therapeutic options for immunological disorders and tumor immunotherapy.


Assuntos
Basigina/metabolismo , Glicólise/imunologia , Neoplasias/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia , Animais , Basigina/imunologia , Carcinogênese/imunologia , Modelos Animais de Doenças , Metabolismo Energético/imunologia , Humanos , Imunoterapia/métodos , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T/imunologia , Linfócitos T/metabolismo
20.
Cell Mol Immunol ; 16(6): 568-579, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29563614

RESUMO

The abnormal activation of CD4+CD45RO+ memory T (Tm) cells plays an important role in the pathogenesis of rheumatoid arthritis (RA). Previous studies have shown that CD147 participates in T-cell activation. However, it remains unclear whether CD147 is involved in abnormal Tm-cell activation in RA patients. In this study, we demonstrated that CD147 was predominantly upregulated in Tm cells derived from RA patients. The anti-CD147 mAb 5A12 specifically inhibited Tm-cell activation and proliferation and further restrained osteoclastogenesis. Using a structural-functional approach, we depicted the interface between 5A12 and CD147. This allowed us to identify two critical residues, Lys63 and Asp65, as potential targets for RA treatment, as the double mutation K63A/D65A inhibited Tm-cell activation, mimicking the neutralization by 5A12. This study provides not only a theoretical basis for a "CD147-Tm/Osteoclast-RA chain" for the potential prevention and treatment of RA or other T-cell-mediated autoimmune diseases but also a new target for related drug design and development.


Assuntos
Artrite Reumatoide/imunologia , Basigina/metabolismo , Linfócitos T CD4-Positivos/imunologia , Epitopos/metabolismo , Adulto , Basigina/genética , Basigina/imunologia , Células Cultivadas , Técnicas de Cocultura , Epitopos/imunologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Memória Imunológica , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...